14 research outputs found

    Zur Bedeutung von Phosphatidylinositol-3-Kinasen für die Modulation hepatobiliärer Sekretion durch Gallensäuren in der perfundierten Rattenleber

    Get PDF
    Zur Bedeutung von Phosphatidylinositol-3-Kinasen für die Modulation hepatobiliärer Sekretion durch Gallensäuren in der perfundierten Rattenlebe

    Analysis of IL2/IL21 Gene Variants in Cholestatic Liver Diseases Reveals an Association with Primary Sclerosing Cholangitis

    Get PDF
    Background/Aims: The chromosome 4q27 region harboring IL2 and IL21 is an established risk locus for ulcerative colitis (UC) and various other autoimmune diseases. Considering the strong coincidence of primary sclerosing cholangitis (PSC) with UC and the increased frequency of other autoimmune disorders in patients with primary biliary cirrhosis (PBC), we investigated whether genetic variation in the IL2/IL21 region may also modulate the susceptibility to these two rare cholestatic liver diseases. Methods: Four strongly UC-associated single nucleotide polymorphisms (SNPs) within the KIAA1109/TENR/IL2/IL21 linkage disequilibrium block were genotyped in 124 PBC and 41 PSC patients. Control allele frequencies from 1,487 healthy, unrelated Caucasians were available from a previous UC association study. Results: The minor alleles of all four markers were associated with a decreased susceptibility to PSC (rs13151961: p = 0.013, odds ratio (OR) 0.34; rs13119723: p = 0.023, OR 0.40; rs6822844: p = 0.031, OR 0.41; rs6840978: p = 0.043, OR 0.46). Moreover, a haplotype consisting of the four minor alleles also had a protective effect on PSC susceptibility (p = 0.0084, OR 0.28). A haplotype of the four major alleles was independently associated with PSC when excluding the patients with concomitant inflammatory bowel disease (p = 0.033, OR 4.18). Conclusion: The IL2/IL21 region may be one of the highly suggestive but so far rarely identified shared susceptibility loci for PSC and UC. Copyright (C) 2011 S. Karger AG, Base

    norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis

    Get PDF
    Background & Aim: Primary sclerosing cholangitis (PSC) represents a devastating bile duct disease, currently lacking effective medical therapy. 24-norursodeoxycholic acid (norUDCA) is a side chain-shortened C-23 homologue of UDCA and has shown potent anti-cholestatic, anti-inflammatory and anti-fibrotic properties in a preclinical PSC mouse model. A randomized controlled trial, including 38 centers from 12 European countries, evaluated the safety and efficacy of three doses of oral norUDCA (500 mg/d, 1,000 mg/d or 1,500 mg/d) compared with placebo in patients with PSC. Methods: One hundred sixty-one PSC patients without concomitant UDCA therapy and with elevated serum alkaline phosphatase (ALP) levels were randomized for a 12-week treatment followed by a 4-week follow-up. The primary efficacy endpoint was the mean relative change in ALP levels between baseline and end of treatment visit. Results: norUDCA reduced ALP levels by -12.3%, -17.3%, and -26.0% in the 500, 1,000, and 1,500 mg/d groups (p = 0.029, tively, while a +1.2% increase was observed in the placebo group. Similar dose-dependent results were found for secondary end-points, such as ALT, AST, gamma-GT, or the rate of patients achieving ALP levels <1.5 x ULN. Serious adverse events occurred in seven patients in the 500 mg/d, five patients in the 1,000 mg/d, two patients in the 1500 mg/d group, and three in the placebo group. There was no difference in reported pruritus between treatment and placebo groups. Conclusions: norUDCA significantly reduced ALP values dose-dependently in all treatment arms. The safety profile of norUDCA was excellent and comparable to placebo. Consequently, these results justify a phase III trial of norUDCA in PSC patients. Lay summary: Effective medical therapy for primary sclerosing cholangitis (PSC) is urgently needed. In this phase II clinical study in PSC patients, a side chain-shortened derivative of ursodeoxycholic acid, norursodeoxycholic acid (norUDCA), significantly reduced serum alkaline phosphatase levels in a dose-dependent manner during a 12-week treatment. Importantly, norUDCA showed a favorable safety profile, which was similar to placebo. The use of norUDCA in PSC patients is promising and will be further evaluated in a phase III clinical study. (C) 2017 European Association for the Study of the Liver. Published by Elsevier B.V.Peer reviewe

    Analysis of IL2/IL21 Gene Variants in Cholestatic Liver Diseases Reveals an Association with Primary Sclerosing Cholangitis

    Get PDF
    Background/Aims: The chromosome 4q27 region harboring IL2 and IL21 is an established risk locus for ulcerative colitis (UC) and various other autoimmune diseases. Considering the strong coincidence of primary sclerosing cholangitis (PSC) with UC and the increased frequency of other autoimmune disorders in patients with primary biliary cirrhosis (PBC), we investigated whether genetic variation in the IL2/IL21 region may also modulate the susceptibility to these two rare cholestatic liver diseases. Methods: Four strongly UC-associated single nucleotide polymorphisms (SNPs) within the KIAA1109/TENR/IL2/IL21 linkage disequilibrium block were genotyped in 124 PBC and 41 PSC patients. Control allele frequencies from 1,487 healthy, unrelated Caucasians were available from a previous UC association study. Results: The minor alleles of all four markers were associated with a decreased susceptibility to PSC (rs13151961: p = 0.013, odds ratio (OR) 0.34; rs13119723: p = 0.023, OR 0.40; rs6822844: p = 0.031, OR 0.41; rs6840978: p = 0.043, OR 0.46). Moreover, a haplotype consisting of the four minor alleles also had a protective effect on PSC susceptibility (p = 0.0084, OR 0.28). A haplotype of the four major alleles was independently associated with PSC when excluding the patients with concomitant inflammatory bowel disease (p = 0.033, OR 4.18). Conclusion: The IL2/IL21 region may be one of the highly suggestive but so far rarely identified shared susceptibility loci for PSC and UC. Copyright (C) 2011 S. Karger AG, Base

    Plasma separation and anion adsorption transiently relieve intractable pruritus in primary biliary cirrhosis

    No full text
    BACKGROUND/AIMS: Pruritus can be a severely disabling symptom in patients with primary biliary cirrhosis who do not respond to treatment with ursodeoxycholic acid, anion exchangers, enzyme inducers, or opiate antagonists. The aim of this study was to assess the clinical efficacy of plasma separation and anion adsorption in the treatment of intractable pruritus of cholestasis. METHODS: Three patients with primary biliary cirrhosis and intractable pruritus defined by severity of pruritus 7 on a rating scale between 0 (no pruritus) and 10 (maximal pruritus) on at least 4 of 7 days despite medical treatment were treated with plasma separation and anion adsorption on three consecutive days. Fatigue was assessed using the Fisk Fatigue Severity Score and quality of life was assessed by the PBC-40, a disease specific health related quality of life measure. RESULTS: Improvement in pruritus, fatigue, and quality of life was transiently observed in all patients. Serum bile acid levels showed no association with intensity of pruritus, and the bile acid pattern was not altered. The treatment was well tolerated by all patients. CONCLUSIONS: Plasma separation and anion adsorption seem to be a safe and effective therapeutic option for patients with primary biliary cirrhosis suffering from intractable pruritu

    Role of mitogen-activated protein kinases in tauroursodeoxycholic acid-induced bile formation in cholestatic rat liver

    No full text
    Aim: Ursodeoxycholic acid exerts anticholestatic effects in various cholestatic disorders and experimental models of cholestasis. Its taurine conjugate (TUDCA) stimulates bile salt secretion in isolated perfused rat livers (IPRL) under physiological, non-cholestatic conditions, in part by mitogen-activated protein kinase (MAPK)-dependent mechanisms. The role of MAPK in the anticholestatic effect of TUDCA, however, is unclear. Therefore, we studied the role of MAPK in the anticholestatic effect of TUDCA in IPRL and isolated rat hepatocytes (IRH) in taurolithocholic acid (TLCA)-induced cholestasis. Methods: Bile flow, biliary levels of 2,4-dinitrophenyl-S-glutathione (GS-DNP) as a marker of hepatobiliary organic anion secretion and activity of lactate dehydrogenase (LDH) in hepatovenous effluate as a marker of hepatocellular damage in IPRL perfused with TUDCA and/or TLCA were determined in the presence or absence of MAPK inhibitors. In addition, phosphorylation of Erk 1/2 and p38(MAPK) induced by TUDCA and/or TLCA was studied by Western immunoblot in IPRL and IRH. Results: TUDCA-induced bile flow was impaired by the Erk 1/2 inhibitor PD98059 in normal livers (-28%), but not in livers made cholestatic by TLCA. GS-DNP secretion was unaffected by PD98059 under both conditions. TUDCA-induced bile formation and organic anion secretion both in the presence and absence of TLCA were unaffected by the p38(MAPK) inhibitor SB202190. Erk 1/2 phosphorylation in liver tissue was unchanged after bile salt exposure for 70 min, but was transiently enhanced by TUDCA in IRH. Conclusion: MAPK do not mediate the anticholestatic effects of TUDCA in TLCA-induced cholestasi

    Tauroursodeoxycholic acid reduces bile acid-induced apoptosis by modulation of AP-1

    No full text
    Ursodeoxycholic acid (UDCA) is used in the therapy of cholestatic liver diseases. Apoptosis induced by toxic bile acids plays an important role in the pathogenesis of liver injury during cholestasis and appears to be mediated by the human transcription factor AP-1. We aimed to study if TUDCA can decrease taurolitholic acid (TLCA)-induced apoptosis by modulating AP-1. TLCA (20 microM) upregulated AP-1 proteins cFos (26-fold) and JunB (11-fold) as determined by quantitative real-time PCR in HepG2-Ntcp hepatoma cells. AP-1 transcriptional activity increased by 300% after exposure to TLCA. cFos and JunB expression as well as AP-1 transcriptional activity were unaffected by TUDCA (75 microM). However, TUDCA significantly decreased TLCA-induced upregulation of cFos and JunB. Furthermore, TUDCA inhibited TLCA-induced AP-1 transcriptional activity and reduced TLCA-induced apoptosis. These data suggest that reversal of bile acid-induced AP-1 activation may be relevant for the antiapoptotic effect of TUDCA in liver cell

    Down-regulation of the organic cation transporter 1 of rat liver in obstructive cholestasis

    No full text
    The liver plays a major role in biotransformation and elimination of various therapeutic agents and xenobiotics, many of which are organic cations and substrates of the organic cation transporter 1 (Oct1, Slc22a1). Oct1 is expressed at the basolateral membranes of hepatocytes and proximal renal tubules. Although Oct1 is the major uptake mechanism in hepatocytes for many pharmaceutical compounds, little is known about the effects of liver injury on this process. Our aim was to investigate the effects of obstructive cholestasis on Oct1 expression and function in liver and kidney. The effects of bile duct ligation (BDL) on Oct1 protein, messenger RNA (mRNA) expression, and tissue localization were determined in rat liver and kidney with Western analysis, real-time reverse transcriptase-mediated polymerase chain reaction (RT-PCR), and immunofluorescence. To assess Oct1 function, the model substrate tetraethylammonium ([(14)C]TEA) was administered intravenously to BDL and control rats and distribution of radioactivity was determined. Oct1 protein significantly decreased in cholestatic livers to 42.1 +/- 17.7% (P <.001), 15.5 +/- 4.7% (P <.05), and 8.6 +/- 2.7% (P <.05) of controls after 3, 7, and 14 days, respectively, but not in kidneys. Hepatic Oct1 mRNA decreased to 77.2 +/- 12.7%, 40.7 +/- 8.1% (P <.05), and 50.3 +/- 7.5% (P <.05) 3, 7, and 14 days after BDL, respectively. Tissue immunofluorescence corroborated these data. Hepatic accumulation of [(14)C]TEA in 14-day BDL rats was reduced to 29.6 +/- 10.9% of controls (P <.0005). In conclusion, obstructive cholestasis down-regulates Oct1 and impairs Oct1-mediated uptake in rat liver, suggesting that hepatic uptake of small cationic drugs may be impaired in cholestatic liver injur

    Taurolithocholic acid exerts cholestatic effects via phosphatidylinositol 3-kinase-dependent mechanisms in perfused rat livers and rat hepatocyte couplets

    No full text
    Taurolithocholic acid (TLCA) is a potent cholestatic agent. Our recent work suggested that TLCA impairs hepatobiliary exocytosis, insertion of transport proteins into apical hepatocyte membranes, and bile flow by protein kinase Cepsilon (PKCepsilon)-dependent mechanisms. Products of phosphatidylinositol 3-kinases (PI3K) stimulate PKCepsilon. We studied the role of PI3K for TLCA-induced cholestasis in isolated perfused rat liver (IPRL) and isolated rat hepatocyte couplets (IRHC). In IPRL, TLCA (10 micromol/liter) impaired bile flow by 51%, biliary secretion of horseradish peroxidase, a marker of vesicular exocytosis, by 46%, and the Mrp2 substrate, 2,4-dinitrophenyl-S-glutathione, by 95% and stimulated PI3K-dependent protein kinase B, a marker of PI3K activity, by 154% and PKCepsilon membrane binding by 23%. In IRHC, TLCA (2.5 micromol/liter) impaired canalicular secretion of the fluorescent bile acid, cholylglycylamido fluorescein, by 50%. The selective PI3K inhibitor, wortmannin (100 nmol/liter), and the anticholestatic bile acid tauroursodeoxycholic acid (TUDCA, 25 micromol/liter) independently and additively reversed the effects of TLCA on bile flow, exocytosis, organic anion secretion, PI3K-dependent protein kinase B activity, and PKCepsilon membrane binding in IPRL. Wortmannin also reversed impaired bile acid secretion in IRHC. These data strongly suggest that TLCA exerts cholestatic effects by PI3K- and PKCepsilon-dependent mechanisms that are reversed by tauroursodeoxycholic acid in a PI3K-independent wa
    corecore